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Curvature Calculations with Spacetime Algebra 

D a v i d  H e s t e n e s  1 

Received July 23, 1986 

A new method for calculating the curvature tensor is developed and applied to 
the Scharzschild case. The method employs Clifford algebra and has definite 
advantages over conventional methods using differential forms or tensor analysis. 

1. INTRODUCTION 

Spacetime algebra is a Clifford algebra representing the directional and 
metrical properties of  spacetime. It was originally introduced (Hestenes, 
1966) as a unified mathematical language for physics, with applications to 
electrodynamics, quantum mechanics, and gravitation. It has since been 
generalized and developed into a comprehensive geometric calculus (GC) 
(Hestenes and Sobczyk, 1984) with a wide range of computational 
capabilities. This paper shows how computational problems in gravitation 
theory can be simplified with GC. Specifically, it presents an efficient method 
for computing the curvature tensor from a given metric tensor, and illustrates 
the method by explicit computations from the Schwarzschild metric. 

This method should be compared with the method of differential forms 
presented by Misner et al. (1973) in Chapter 14 of  their book. They correctly 
point out that their method is computationally more efficient than the 
standard method of tensor analysis. But we shall see that unique features 
of GC provide even greater efficiency. Moreover, a subsequent paper will 
show that unlike the method of differential forms, the present method 
applies directly to the computation of gravitational precession for quantum 
mechanical as well as classical particles. 

The present computational method is a straightforward application of 
the general method of  fiducial frames developed in Chapter 6 of Hestenes 
and Sobczyk (1984). I will employ their results without repeating the 
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derivations. But first I review the basic definitions of GC with slight changes 
in notation appropriate for the application to spacetime. 

2. FRAMES 

We represent spacetime by a four-dimensional vector manifold, as 
defined in Hestenes and Sobczyk (1984). Let x = x ( x  ~ x ~, x2, x 3) be a 
spacetime point parametrized by coordinates x``, where /~ = 0, 1, 2, 3. A 
coordinate f rame {g``= g``(x)} at each point x is defined by the partial 
derivatives, 

g,~=-o``x (1) 

The components of the metric tensor are given by the inner products 

g.~ = g``" g~ (2) 

A reciprocal coordinate f rame {g``= g ' (x )}  is defined by the gradients of 
the coordinate functions x ~'= x``(x): 

It follows that 

g`` = D X" (3) 

gO. g~ = g``~ g~v = 3``~ (4) 

where g``~ = g ' .  g% 
The coordinate frame {g``} is related to a fiducial f rame {%,} by a 

fiducial tensor h. The fiducial frame is orthonormal, so 

3',," 3'v = n,8``~ (5) 

where % = %2 is the signature indicator. Its reciprocal frame {3'"} is given 
by 

Y~" = n``%, (6) 

so y " .  % = 6``~. We may assume that both coordinate frame and fiducial 
frame are right-handed, so 

i= YoYlY2Y3 (7) 

where i=  i (x)  is the unit right-handed pseudoscalar for the spacetime 
manifold. 

The fiducial tensor h is a symmetric tensor relating the coordinate and 
fiducial frames by the linear transformation 

g~, = h( y``) = h~.w (8) 

y~ = h(g``) = h~'~g ~ = h``~Dx ~ (9) 
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The matrix elements of  the fiducial tensor are 

h '~  =- T ~  g~ = T ~  h(T~)= h(T~ �9 T~ =gO.  T~ (10) 

The fiducial tensor is related to the metric tensor by 

g~,~ = go" g~ = h ( T o )  " h (T~)  = h ~ r l ~ h " ~  (11) 

The symmetry of the fiducial tensor allows us to write this in the form 

go~ = To" h2(Y~) =- To" g (Y~)  (12) 

Thus, we can regard the metric tensor as a linear transformation g = h 2 on 
the fiducial frame, so the fiducial tensor h = g l /2  is a square root of  the 
metric tensor. This suggests that, with suitable provisos, the fiducial tensor 
can be interpreted as a gravitational strain tensor describing a distortion of 
fiat space. But that theme will not be pursued here. I will be content to note 
that for curvature computations the fiducial tensor is simpler than the metric 
tensor. 

3. D E R I V A T I V E S  

According to Hestenes and Sobczyk (1984), the fundamental  differ- 
ential operator  on a vector manifold is the derivative 0 = 0x with respect to 
a point x on the manifold. All other differential operators can be expressed 
as algebraic functions of  this operator. In particular, coordinate derivatives 
are related to 0 by 

go"  0 = h~,T~ �9 O=-O/Ox ~ (13) 

Although it is best to define 0 independently of  coordinates, as done in 
Hestenes and Sobczyk (1984), if the manifold (or some part  of  it) is 
parametrized by coordinates, the point derivative 0 can be obtained from 
the coordinate derivatives by 

0 = g~O o (14) 

For the d i rec t i ona l  coder i va t i ve  we adopt the notation 

Do = go" [] = h~oY~ " [] (15) 

This differential operator is equivalent to the conventional covariant deriva- 
tive. It is related to the point coder iva t i ve  [] by 

[] = g~'[]~, (16) 

The coderivative [] is defined in terms of the derivative O in Hestenes and 
Sobczyk (1984). But it can be defined alternatively by specifying the 
coderivatives of  a fiducial frame, as is done below. 
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Since a fiducial frame is orthonormal, it can only rotate when it is 
displaced along a curve in the manifold. Therefore, the directional 
coderivatives of the fiducial vectors must have the form 

D.y~ = co.. Y~ (17) 

where oJ. is the "angular velocity" of the rotation for a displacement in 
the g.  direction. The four w. are bivectors determining a Riemannian 
connection for the manifold. 

To describe the coderivative of any differentiable multivector field 
A = A ( x ) ,  i.e., any function with values in the spacetime algebra, it is 
convenient to introduce the fiducial derivative d.  defined by 

d.y~ = 0  (18a) 

and 

d .6  = 0 .6  (18b) 

for any scalar-valued function ~b = 4~(x). Then we can write 

D . A  = d . A +  w .  x A (19) 

where B x A =- (1 /  2 )( B A  - A B  ) is the commutator product. The commutator 
of the coderivatives gives 

[F-1., [] ~]A = w.~ x a (20) 

where 

c%~ = d.to~ - d~w. + to N x w~ = R ( g .  ^ g~) (21) 

is the curvature tensor evaluated on the bivector g .  A g~. By virtue of (18a) 
and (18b), the fiducial derivatives in (21) can be computed from 

d~.w~ =l(o.wv~~ A '}//3 (22) 

where to~ ~~ = y~.  w~. yo = to~. (y 8 A y~). 
The curvature tensor R ( B )  is a linear symmetric bivector-valued func- 

tion of a bivector variable. By virtue of its linearity, (8) in (21) yields 

t%~ = h . ~ h f  to~o (23) 

where 

c% o = R(y~ A Y0) (24) 

is the curvature tensor evaluated on the fiducial bivector %, A Y0" The 
covariant tensor components of the curvature tensor are given by 

R.~.~ o = R ( g .  ^ g~) . (g~ ^ go) = t%~. (g~ A go) = (g~ ^ g~) " t~ (25) 
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4. CURVATURE CALCULATIONS 

As shown in Hestenes and Sobczyk (1984), (17) can be solved for the 
connection bivectors c%, with the result 

to~, = �89 A ~ A y ~ )  " g ~ -  h ~ D  A y~ (26) 

and the cocurls can be obtained from the fiducial tensor with 

[] ^ y~ = ~/~([~ h~'~) A g~ (27) 

where �9  = O h ' ~  is the gradient of  the scalar-valued h~'~. 
One can calculate the curvature tensor from the fiducial tensor by using 

(26), (25), and (21) to determine the following quantities in sequence: 

For orthogonal coordinates, the y ,  are eigenvectors of  the fiducial tensor, 
and one has the simplifications 

h~'~ = h~8~'~ (28) 

%, = ~7~, y ~" = ~l~.h~[]x ~" = h ~l  gvo (29) 

t %  = - h ~ . [ ]  ^ %, = %, A []hv~ = y~  A y~h~lo~,h~,  (30) 

d~to~ = [ ,1.O~.( h ~lo,~h~) ]~/~ A "y'~ (31) 

Conventional calculations of  curvature begin specifying the metric tensor 
by writing the "line element" 

d x  2 = d x .  d x  = g . ~  d x  ~ d x  ~ (32) 

with the g.~ expressed as define functions of  coordinates x ~'. We can 
determine the fiducial tensor from (32) by using (11), so we can proceed 
from the conventional starting point to calculate the curvature by the method 
of  fiducial frames. 

As an example of  fundamental  importance, one cannot do better than 
calculate the curvature tensor from the Schwarzschild line element 

d x  2 = e 2"t" d t  2 - e 2x d r  2 - r2( dO2 + sin 2 0 d~b z) 

= hte d t  2 -  h 2 d r  2 -  ho 2 dO 2 -  h62 d(b 2 (33) 

where qb = qb(r, t) and A = )t(r, t) are scalar functions independent of  coor- 
dinates 0 and 4~. Comparing (33) with (29), one can immediately write down 

% = e ~ [] t ht = e "~ 

% = - e  x D r  hr = e x 

Yo = - r  []O ho = r 

7~ = - r  sin 0 D~b h , = r s i n O  

(34) 
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The use of  the same symbols t, r, 0, ~b for indices, coordinates, and 
independent variables should not cause confusion, as the distinction is clear 
from the context. 

Using (34) in (30), one obtains easily 

tOt = - Y t  A Yr d P r e  r  

tOr = yr  A "yt h t  e x -e~  
(35) 

09o = --TO A ")/r e-h 

too = - y +  A (%e  -a sin 0+3'0 cos 0) 

where subscripts on �9 and A indicate derivatives, that is, ~ r  =0r  qb and 
At = 8th. 

The simple computation of tO~, in (35) may be compared with the 
corresponding computation from the Friedmann metric in Misner et al. 

(1973, pp. 356). Skillful guessing with differential forms is advocated by 
Misner et  al., while we merely apply equation (30), which has no counterpart 
in Misner et  al. Indeed, application of (30) is easier as well as more 
straightforward than guessing, because the effort needed to check each guess 
has been expended once and for all in the derivation of (30). 

It should be noted that the "wedges" in (35) are actually unnecessary 
because the y~ are orthogonal. This greatly simplifies the evaluation of 
commutators tO, x tOy, and one easily determines that the nonvanishing 
commutators have the values 

tOt X tOo = "Yt A ')/o qbr e ~ - 2 x  

tOt X tO6 = ')It A ')z 0 (I) r e ~ - 2 x  s i n  0 

tot X too = Y0 A Yt At e -*  (36) 

tot x to,~ = y ,  A Yt At e -~ sin 0 

too x tO,~ = (Yr e - x  c o s  0 --  Yo e -2x sin 0) A y 6  

Using (31) to compute the relevant fiducial derivatives from (35), one 
finds that the nonvanishing terms are 

drto t 

dtto r 

d,to o 

dtw ~, 

C t o ,  

drto r 

d oto 4 

: ~/r A ~ l t ( h t t - ] - h 2 t - - l ~ t ~ t )  e ~ - r  

= To ^ % A t  e -~ 

= y ~  A Yr At e -x sin 0 

= Y6 A 7rAr e -x 

= 7 4  A 7r hr e -~ sin 0 

= (% e -~ cos 0 - 3/0 sin O) A 74 

(37) 
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Finally, one obtains the curvature bivectors by inserting (36) and (37) into 
(21). I display the result to show both the coordinate components and the 
fiducial components oJ~-= R(%, ^ %) :  

O.)tr ~ e~'+xtof~ 

= e~+XYr ^ yt[(Att + At 2 - A t @ , )  e - 2 .  

-(qbr+qb?-qbrA~) e -2A] 

tOto = e~ ro ) fg  

= e * r y o  ^ [ y , A t r  -1 e - * - A  + y t ~ r r  -1 e -2A ] 

tot4, = e ~  r sin Otot~ 

= e * r  sin 03,4, ̂  [ y ~ t r  -1 e - * - A  + ytdgrr -1 e -2A ] (38) 

tOrO -~- e A r to?~ 

= eAryo ^ [y ,Arr  -1 e -2A _ y tAtr  -1 e - r  ] 

tor4, = ear  sin 0to~ 

= ear  sin Oy6 ^ ['yrl~r r-1 e -2A - %Air -1 e - * - a  ] 

09o4, = r 2 sin 0toO~; 

= r 2 sin Oyo ^ y4 , r -2 (e  -2A - 1) 

Of course, if we had so desired, we could have computed any one of  these 
bivectors independently of the others. Also, many of the coefficients in (38) 
are equivalent because of the symmetry property of curvature, A .  R ( B )  = 

B .  R ( A ) .  This redundancy provides a check on the computations. 
The orthogonality of the y"  makes it especially easy to contract (38) 

to get the Ricci tensor 

R ( y ~ ) =  y ~ .  R ( y ~ ^  y ~ )  = y ~ .  w ~  

We obtain 

R(%) = 2y~Atr -1 e -~'-~ 

+ yt[ (At t+At2-Atd .Pt )  e-2C'-(dPrr+dPr2-dPrA~-2C~r r - l )  e -2A ] 

(39a) 

R ( y r )  = 2ytAtr -1 e - ' t ' -A 

-~- ")/r[-( Att -~- A 2t - At(~ t) e-2a" + ( ~ r~ W dPr2-dP rA~ + 2A~r -1) e -2~ ] 

(39b) 

R ( y o )  = y o [ ( A r - d P r ) r  -~ e -2A +(1 - e - 2 A ) r  -2] = y4 , yoR(y4 , )  (39c) 
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Sett ing R ( % , ) =  0 to f ind the  "f ree  space"  grav i ta t iona l  field accord ing  to 
Einste ins  theory ,  we see immedia t e ly  tha t  (39a) and  (39b) imply  that  
qb, = At = 0 and  qb = - A ,  so (39c) reduces  to the  equa t ion  

r a t +  e - X - 1  = 0  

This in tegrates  to the f amous  Schwarzensch i ld  so lu t ion  

2K 
e -~ = 1 - - - =  e a' (40) 

r 

where  K is a constant .  
We  can  subst i tute  (40) into (35) to get  the w,, as an expl ic i t  funct ion  

o f  the coord ina tes .  The  resul t  can be used  to descr ibe  the  mot ion  o f  a test 
body ,  as exp l a ined  in a subsequent  paper .  
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